Учёные давно пытались создать искусственный аналог нейронов, общая масса которых могла бы сравниться по вычислительной мощности с мозгом. Но пока мозг значительно производительнее, чем все существующие вычислительные машины.
Большая часть работы исследователей всего мира сосредоточена на создании кремниевых схем, в то время как несколько других групп учёных исследуют альтернативные подходы, такие как использование сверхпроводящих устройств, известных как джозефсоновские контакты.
Авторы нового исследования совершенно забыли про электронику и сделали ставку на оптику. Сильвен Барбей (Sylvain Barbay) и его коллеги из Лаборатории фотоники и наноструктур CNRS (CNRS Laboratory for Photonics and Nanostructures) использовали особый тип лазера (micropillar laser). Высота микроколонны, основы такого лазера, составила 10 микрометров, а ширина не превышала нескольких микрометров.
Этот цилиндрический столбик состоит из чередующихся слоёв полупроводниковых материалов, выращенных на подложке. Слои образуют активную среду, ограниченную двумя параллельными зеркалами, и область, которая поглощает свет низкой интенсивности при передаче света более высокой интенсивности.
Чтобы продемонстрировать схожесть новой установки с нейроном, исследователи дополнили лазер 794-нанометровой решёткой полупроводниковых диодных лазеров и 800-нанометровым титан-сапфировым лазером. Используя титан-сапфировый лазер, учёные продемонстрировали "возбуждение" устройства (эквивалентное включению нейрона), происходящее при входящих сигналах в несколько десятков наноджоулей. При этом всё это происходило во временных рамках всего в 200 пикосекунд.
Таким образом Барбей и его коллеги получили искусственный оптический нейрон, который активизируется гораздо быстрее, чем любой его электронный или биологический аналог, реагирующие в течение нескольких миллисекунд.
На следующем этапе учёные использовали пару титан-сапфировых лазеров вместо двух настоящих нейронов, отсылающих входящий сигнал основному нейрону. Так они продемонстрировали и другое свойство, роднящее миниатюрный лазер с живой нервной клеткой — минимальный временной разрыв между активациями.
"Без этого разрыва активность нейрона была бы неупорядоченной, и помехи от предыдущего импульса перекрывали бы следующий", — поясняет Барбей, чья статья вышла в журнале Physical Review Letters.
Учёные обнаружили, что устройство срабатывает только один раз, если два входящих импульса разделены менее чем 150 пикосекундами. Этот временной интервал, когда нейрон не воспринимает другие входящие сигналы, известен как период абсолютной рефрактерности. Он необходим биологической клетке, чтобы регулировать процессы торможения.
Исследователи также выяснили, что новый лазер обладает и периодом относительной рефрактерности. В это время искусственному нейрону нужен более сильный входящий сигнал, чтобы снова "включиться". Происходит это в промежуток времени между 150 и 350 пикосекундами после первого входящего импульса. По прошествии 350 пикосекунд устройство начинает работать в обычном режиме.
"Период относительной рефрактерности ранее не был замечен нигде в оптических системах. Это наблюдение представляет собой особый интерес, поскольку оно усиливает аналогию с биологическими нейронами. Таким образом выражается "память" системы о её предыдущем состоянии", — говорит Барбей.
Авторы исследования отмечают, что учёные по-прежнему далеки от создания вычислительной машины, способной состязаться по производительности с мозгом человека. Однако разработка Барбея и его коллег потенциально способна стать частью искусственной нейронной сети, на которой можно будет ставить биотехнологические эксперименты.
Также по теме:
Проект Human Brain: в Швейцарии создают искусственный супермозг
Созданы нейроморфные чипы, имитирующие функции мозга
Искусственный интеллект достиг уровня четырехлетнего ребенка
Биологи подчинили мышей своей воле с помощью крошечных светодиодов
Учёные научились контролировать боль с помощью света
Новый материал может стать квантовой памятью будущего
|