За последние 100 лет физики построили точные и действенные теории о Вселенной — от самого маленького до самого большого. Однако есть масштабы, на которых все эти теории не работают и которые хранят самые большие тайны о законах природы.
Мы привыкли жить в мире крупных, макроскопических вещей. Все, с чем сталкивается обычный человек в течение дня — от чашки кофе с утра до огромного огненного шара в небе под названием Солнце, — вещи, которые мы можем либо видеть, либо осязать. Однако еще в Древней Греции философы, в частности Демокрит и его учитель Левкипп, предположили, что все состоит из мельчайших неделимых частиц — атомов (в переводе с греческого буквально означает «неделимый»).
Со временем был открыт атом, а затем и его свойство, что он вовсе не неделимый, а состоит из ядра и вращающегося вокруг него электрона. Затем выяснилось, что и ядро состоит из протонов и нейтронов. Еще позже были открыты кварки, из которых состоят протоны и нейтроны атомных ядер. Эти миниатюрные частицы называют элементарными. Помимо кварков, среди элементарных частиц есть уже упомянутые электроны, бозоны, нейтрино и фотоны. Все они считаются теми самыми древнегреческими «атомами» — неделимыми.
Идея параллельных вселенных будоражит человеческий ум. Но мало кто знает, что автором одной из самых популярных и распространенных идей о параллельных мирах был скромный и упрямый аспирант из Принстона.
Однажды вечером 1955 года в Принстоне за бокалом-другим хереса датский физик Оге Петерсен обсуждал с двумя своими аспирантами — Чарльзом Мизнером и Хью Эвереттом — тайны, лежащие в самом сердце квантовой механики. Петерсен защищал идеи своего наставника Нильса Бора, бывшего одним из авторов так называемой Копенгагенской интерпретации — стандартного способа понимания квантовой физики. Копенгагенская интерпретация утверждает, что квантовый мир полностью отделен от нашего ежедневного опыта.
Петерсен говорил, что квантовая физика применима только к реальности сверхмалых масштабов, где царят отдельные и очень странные субатомные частицы. Он отмечал, что эту область науки невозможно использовать для описания мира людей, стульев и других объектов, состоящих из триллионов и триллионов таких частиц: этот мир может быть описан только классической физикой Исаака Ньютона. Кроме того, Петерсен утверждал, что математика квантовой физики сама сводится к математике физики Ньютона, как только количество частиц возрастает и становится достаточно большим.
Четырнадцатого марта 1879 года в городе Ульм родился человек, впоследствии перевернувший научный мир с ног на голову. Его работы лежат в основе понимания Вселенной — в частности, гравитации. В чем же вся гениальность трудов Альберта Эйнштейна и каково их место в XXI веке?
Когда юный Альберт Эйнштейн опубликовал Общую теорию относительности в 1915 году, вряд ли кто-то мог предположить, какое влияние она окажет на науку. Относительность изменила наше понимание Вселенной и предоставила новые способы изучения фундаментальной физики, которым подчиняется окружающий мир.
Несмотря на всю важность принципа относительности, с ней не все так просто, как хотелось бы. И пусть кому-то может показаться, что эта теория слишком абстрактна и оторвана от реальности, на самом деле она напрямую связана с нашим существованием на фундаментальном уровне. Она позволила изучить и исследовать космос, а на Земле она стоит за технологиями, связанными со множеством открытий: от GPS до ядерной энергии, от смартфонов до ускорителей частиц — множество инноваций, которые мы принимаем как должное, уходят корнями в теорию Эйнштейна.
Каждый день в мире происходят десятки важных событий, которые касаются ряда сфер человеческой жизни. С начала XXI века наука ни минуты не стояла на месте и каждое мгновение двигалась вперед, открывая новые грани окружающего нас мира и самого человека. За минувшие 15 лет жители планеты успели стать свидетелями целого перечня различных открытий, которые ставят нас на пороге эволюции и новой эпохи.
Открытия касались как сферы высоких технологий, так и медицины, истории, биологии, физики и прочих направлений. Некоторые выводы ученых достаточно удивительны и уникальны, другие же становятся подтверждением гипотез и теорий, выдвинутых еще десятки лет назад. Так какими же наиболее значимыми научными открытиями ознаменовался XXI век и что это значит для современного мира?
Квантовая механика является одним из настоящих прорывов в науке, который позволил ученым объяснить различные явления на уровне атомных и субатомных частиц.
По мере развития квантовой теории, с ее помощью начали доказывать столько разных «тайн», что Эйнштейн как-то заявил: «чем успешнее квантовая теория, тем глупее она выглядит».
Поэтому не удивительно, что квантовая механика оказала огромное влияние на то, как люди воспринимают Вселенную.
Запуск Международной космической станции в ноябре 1998 года предоставил человечеству возможность постоянного нахождения в космосе. Всего каких-то несколько десятилетий назад это было возможно лишь в научной фантастике.
Тот объем информации и знаний, которые мы можем получить с орбиты нашей планеты — бесценен. Однако мы получили не только бесценные научные знания, мы стали свидетелями множества очень загадочных историй, открытий и явлений. Сегодня о них и поговорим.
Самые любопытные концепции, как правило, дальше всех отстоят от воплощения. Но если бы наши предки не были влекомы жаждой исследования, мы никогда бы не вступили в Море Спокойствия и не разбили бы протоны в пыль.
И если мы сегодня не будем мечтать и воплощать наши смелые мечты, мы никогда не освоим далекие планеты и не откроем заповедники на Марсе.
Илон Маск, генеральный директор Tesla и SpaceX, имеет неординарный взгляд как на мир, так и на Вселенную в целом.
Только недавно бизнесмен представил свой проект использования ракеты SpaceX для транспортировки людей по всему миру всего за 30 минут.
Возможно, кто-то скажет, что он сумасшедший. Может быть, это настоящий гений. Скорее всего, и то и другое. Но независимо от того, какую позицию вы принимаете по идеям Маска, стоит их выслушать.
Ниже приведены 14 самых сумасшедших взглядов Маска на все: от Марса до искусственного интеллекта.
“Експрес” поспілкувався з українцем Назаром Бартосіком, що разом із іншими науковцями розгадує принципи побудови Всесвіту.
Фото Reuters
Автор: Олена Ковальська
Назарові — 29, він — науковий співробітник Національного інституту ядерної фізики в італійському Турині. Заклад має контракт про співпрацю із CERN (ЦЕРН) — Європейською організацією з ядерних досліджень, яка створила найбільший у світі прискорювач елементарних частинок. Тож Назар регулярно працює на Великому адронному колайдері (ВАК) поблизу Женеви, у Швейцарії.
Що відбувається всередині нього? Скільки грошей вкладають у ВАК? Як це — бути частиною великої команди, яка вивчає принципи побудови Всесвіту? Розповідає Назар Бартосік.
Эпоха кремниевых технологий подходит к концу, уступая место новому «материалу будущего» — нитриду галлия!
Василий Макаров
На днях Anker представила свой новый крошечный блок питания. По заверениям компании, столь малый размер устройства обусловлен компонентом, который был использован вместо кремния, а именно — нитридом галлия (GaN). Растущая популярность этого прозрачного, подобного стеклу материала, говорит о том, что однажды он может превзойти кремний и сократить потребление энергии во всем мире.
В течение многих десятилетий кремний был основой технологической индустрии, но мы «достигли теоретического предела того, насколько его можно улучшить», — говорит Дан Цин Ван, доктор наук из Гарварда, которая проводит исследования GaN. По ее словам, у всех материалов есть так называемая «запретная зона» — прямое следствие того, насколько хорошо они могут проводить электричество. У нитрида галлия она больше, чем у кремния, а значит он сможет выдерживать более высокое напряжение и ток сможет проходить через устройство с большей скоростью. Об этом рассказывает Мартин Кубалл, физик из Бристольского университета, который возглавляет проект по GaN в области энергетики.