Охотник Галина Григорівна    
Меню сайту
Категорії розділу
Шкільні новини [5]
Новини освіти [19]
Наука і Технології [1063]
Новини космонавтики [133]
Методичний кабінет [7]
Хмаринка тегів
Міні-чат
Конкурси

конкурс сайтов
Наше опитування
Ви, відвідувач сайту:
Всього відповідей: 519
Статистика
Форма входу
Соціальні мережі
Популярні програми
Головна » 2014 » Травень » 27 » Новый материал может стать квантовой памятью будущего
14:13
Новый материал может стать квантовой памятью будущего

Оригинальный лазер и микроскопическое исследование позволили физикам определить позицию трёхзарядных положительных атомов празеодима внутри ортосиликата иттрия с точностью до нескольких нанометров и исследовать их слабое взаимодействие со светом. Данная работа является важным шагом на пути к развитию квантовых вычислительных технологий, потому что ионы подходят для хранения и обработки квантовой информации.

Поскольку оптические свойства квантовых систем являются их основой, многие исследователи в настоящее время сосредоточили свое внимание на таких системах, как светоизлучающие дефекты кристалла в алмазе или на полупроводниковых квантовых точках. Однако до сих пор идеальное хранилище квантовой информации подобрать не удавалось.

Исследователи из немецкого Института физики света Общества Макса Планка представили свою новую разработку, которая претендует на звание хранилища квантовой памяти будущего. Группа учёных также впервые изучила отдельные ионы редкоземельных элементов в кристалле при помощи микроскопии и спектроскопии высокого разрешения.

Оригинальный лазер и микроскопическое исследование позволили физикам определить позицию трёхзарядных положительных атомов празеодима внутри ортосиликата иттрия с точностью до нескольких нанометров и исследовать их слабое взаимодействие со светом. Данная работа является важным шагом на пути к развитию квантовых вычислительных технологий, потому что ионы подходят для хранения и обработки квантовой информации.

Поскольку оптические свойства квантовых систем являются их основой, многие исследователи в настоящее время сосредоточили свое внимание на таких системах, как светоизлучающие дефекты кристалла в алмазе или на полупроводниковых квантовых точках. Однако до сих пор идеальное хранилище квантовой информации подобрать не удавалось.

Компьютерная модель ионов в кристалле. Световой луч определённой частоты возбуждает только один конкретный ион празеодима в решётке (иллюстрация MPI Science of Light).

"Некоторые из источников света теряют яркость или мерцают неконтролируемым образом. Другие же сильно зависят от окружающей среды, в которую они встроены", — поясняет ведущий автор исследования Вахид Сандогдар (Vahid Sandoghdar).

Давно известно, что ионы редкоземельных элементов, таких как неодим или эрбий не имеют таких проблем — по той же причине они являются основой лазерных технологий. Тем не менее, такие элементы нелегко получить. Но группе Сандогдара это удалось: после шести лет упорных исследований физики создали отдельные ионы празеодима и с беспрецедентной точностью измерили их оптические свойства.

Трёхзарядные положительные ионы были встроены в крошечные микрокристаллы и нанокристаллы ортосиликата иттрия. Их энергии варьируются слабо в зависимости от положения в кристалле. Другими словами, они реагируют на излучение немного различающихся частот. Учёные использовали это свойство, чтобы возбудить отдельные ионы в кристаллах с помощью лазера и понаблюдать, как они будут излучать энергию через некоторое время в виде света.

Празеодим, редкоземельный элемент, ионы которого легли в основу новой квантовой системы (фото Wikimedia Commons).

"Так как на ионы редкоземельных элементов не сильно влияют тепловые и акустические колебания в кристалле, некоторые из их энергетических состояний оказывались необычайно стабильными. Проходит больше минуты, прежде чем они переходят обратно в своё основное состояние, а это в миллион раз дольше, чем большинство других квантовых систем, исследуемых сегодня", — рассказывает Сандогдар.

На деле это означает, что с такой системой гораздо проще работать, так как такие сигналы легче поймать. На данный момент индивидуальные ионы испускают менее ста фотонов в секунду. Поэтому исследователи также обдумывают в будущем использовать наноантенны и микрорезонаторы для усиления сигнала празеодима в сто или тысячу раз. После выполнения этого этапа можно будет судить о том, может ли такая система претендовать на звание квантовой.

Результаты эксперимента Сандогдар и его коллеги описали в статье, которая вышла в журнале Nature Communications.

Также по теме:
Алмазы увеличили мощность лазеров
Железо проявило магнитные свойства, характерные для редкоземельных элементов
Физики обнаружили в твёрдом полупроводнике "квантовые капли"
Аспирант-физик создал крупнейший кластер квантовых систем
В алмазе увидели квантовый эффект Зенона 

Категорія: Наука і Технології | Переглядів: 254 | Додав: звезда | Рейтинг: 5.0/1
Всього коментарів: 0
Додавати коментарі можуть лише зареєстровані користувачі.
[ Реєстрація | Вхід ]
Пошук
Фраза дня
Календар
«  Травень 2014  »
ПнВтСрЧтПтСбНд
   1234
567891011
12131415161718
19202122232425
262728293031
Свята та події
Календар свят і подій. Листівки, вітання та побажання
Прогноз погоди
Дніпродзержинськ 
Архів записів
Час життя сайту
Друзі сайту
Освітній портал Сайт о космосе,НЛО,аномалиях Банк Интернет-портфолио учителей Освітній портал MyReferatik
Новини
Copyright MyCorp © 2017Створити безкоштовний сайт на uCoz